

DISTRIBUTION A: Approved for public release; distribution unlimited. Approval given by 88 ABW/PA, 88ABW-2016-4906, 03 Oct 2016.

Developed by:

James Lane

lanejamr@gmail.com

Summer 2014, 2015, 2016

Programming Fundamentals

Course Syllabus

Programming Fundamentals: Course Syllabus 2
Distribution A.

TABLE OF CONTENTS

Table of Contents... 2

1. Introduction .. 3

2. Syllabus ... 4

2.1. Quarter 1 .. 5

2.2. Quarter 2 .. 8

3. Content ... 10

3.1. Installation ... 10

3.1.1. Python Installation .. 11

3.1.2. TI Connect Installation ... 12

3.1.3. Scratch Installation .. 15

3.1.4. Alice Installation .. 16

3.1.5. Arduino Installation ... 18

3.2. Hour of Code Activities .. 19

3.3. Lessons ... 20

3.4. Python Programs .. 20

3.5. Projects .. 21

3.6. Assessments ... 22

4. Resources .. 22

4.1. Standards and Courses ... 22

4.2. Flowcharts .. 23

4.3. Textbooks ... 23

4.4. Graphing Calculator Support .. 24

4.5. Additional Resources and Links to Information ... 25

Programming Fundamentals: Course Syllabus 3
Distribution A.

1. INTRODUCTION

The intent of this syllabus is to provide a practical guide that educators can follow for a semester-

long programming class. It is recommended that students taking this course have completed

Algebra 1 as a pre-requisite. The primary textbook is Python Programming for the Absolute

Beginner, 3rd edition, by Michael Dawson. Other textbooks might be used and viable options are

listed in the Resources at the end of this document. Reading assignments should be completed by

students while in front of a computer either at home or in school. Students should test the lines of

code that are in the reading, and/or work with the source code for the program provided by the

text for that chapter. Accompanying slides from a second textbook, Python Programming: An

Introduction to Computer Science, 2nd edition, by John Zelle, are referenced for use during

classroom instruction.

This course provides opportunities for students to program in several languages. Although Python®

is used as the primary language in this course, teaching Python® is not the main point. Rather,

Python® is used to illustrate fundamental principles of programming design and coding that apply

in any language or computing environment. Being able to write programs in Python® will help

students learn the basic constructs and semantics inherent in almost all programming languages. At

the most basic level, programming teaches a person to analyze a problem, design an algorithm,

implement a solution, and evaluate the results.

An important aspect of good programming is the design phase. Whether using flowcharts or

pseudocode, students should use some form of planning technique to organize an outline of their

programs. This course emphasizes the use of flowcharts and includes supporting resources.

Differentiating assignments, especially long-term projects, based on a student’s level of

programming skills – beginner to expert – is recommended. The pre-assessment can be used to

help identify the relative abilities of the students in class. Allow for student self-selection and

pursuit of personal interests as the course progresses.

Formative assessments could include student submissions of sample programs for periodic review

to determine mastery of programming concepts. Summative assessments may include quizzes,

tests, and projects. The quizzes can be short, in-class activities where students are asked to read

and interpret code, write code, and/or debug code. Several sample assessments are provided in a

separate document with these materials. When possible, printing assessments in color would be

helpful to students as they read code and errors. Sample solutions provided with the assessments

represent one way students may provide a correct answer; as assessments are graded, remember,

there are often multiple correct solutions. Long-term projects can be completed over multiple

weeks and presented to the class when complete. An important skill for students, regardless of

Programming Fundamentals: Course Syllabus 4
Distribution A.

their post-secondary path selection, is the ability to present technical information in front of an

audience.

Logbooks can be used by students as a personal reference for the projects they are completing.

Having students maintain logbooks will provide educators with a way to help monitor and control

student progress. Periodic review of student logbooks will shed light on where students have

invested their time, what knowledge has been attained, what resources are being used, and their

problem solving techniques. Educators can provide feedback to students about their progress,

asking poignant questions about their work, and pointing them toward resources that may advance

their work. Reviewing and providing feedback can be done more efficiently if students create

electronic logbooks. Logbooks could be used as another way for educators to collect a grade.

Logbook entries should have the following general expectations:

¶ Date for each entry

¶ Log of personal activity, completed tasks, communications, team activity

¶ Research and analysis

¶ Include everything contributed towards the solution – the good, the bad, and the ugly…
sketches, pictures, class notes, meeting notes, calculations, design process, design
alternatives, project requirements, project reflection, decision criteria, rationale for
decisions, links to helpful resources, videos, and/or tutorials

While writing programs, students will often generate errors. A good practice would be for students
to copy/paste the code and error message into their log book for future reference. They should
include a description of how the error was resolved. Educators can also save their own error
messages to use as examples for students or to include in assessment items.

2. SYLLABUS

The first nine weeks are developed with an emphasis on instructional lessons and activities. This

section of the course is focused on providing classroom instruction on the major elements of most

programs – input/output, conditional statements, and looping structures – and establishing

classroom expectations. Once the preliminary instruction is completed, students should be able to

become more self-directed; the textbook supports students working through the content at their

own pace. Instruction after the first eight or nine weeks should be focused on discussing or

explaining content students are having difficulty with; this may be accomplished individually, in

small groups, or as a whole class. In addition to the textbook readings and activities, students

should be working on the assigned project for that section of the course.

The course is divided into four sections to provide students with opportunities to complete projects

using different languages, in addition to their daily class activities. The first project requires

students to write a program that runs on a graphing calculator. This may provide a less intimidating

Programming Fundamentals: Course Syllabus 5
Distribution A.

starting point to programming for students already familiar with using a TI-83/84 or Nspire

calculators. The second project requires students to write a program using Scratch or Alice that

demonstrates their level of expertise in programming. The third project requires students to write

a program in Python® or a sketch in Processing to operate a microcontroller. The last project is

intended to be completely open for the students to decide what they would like to do with the

programming skills they have developed during the course.

Listed below is a sample of ideas students might pursue for their final project:

¶ write a game using PyGame

¶ write a program for a calculator using Lua

¶ create a mobile application using AppInventor or Build an iOS Game in Your Browser

¶ create a microcontroller project

¶ control an exterior holiday light display

¶ augment a garment with LEDs controlled by a microcontroller

¶ program an alternative use for a video game controller (e.g. as a MIDI interface for music)

¶ work with robotics

2.1. QUARTER 1

Day 1 Class Activity – Python® installation

 Instruction – Course expectations, syllabus

 Resource Document – Python® Installation

Day 2 Class Activity – Pre-assessment

 Instruction – Software use (interactive and script modes, line #’s)

 Resource Document – Coding Pre-assessment

 Reading Assignment – Dawson Chapter 1

Day 3 Class Activity – Cups introduction

 Instruction – Logbook use, software use (error messages)

 Resource Document – Logbook Information, Cups Lesson

Day 4 Class Activity – Cups

 Resource Document – Cups Lesson csedweek.org/files/CSEDrobotics.pdf

 Reading Assignment – Dawson Ch. 2 (pgs. 15-32)

http://csedweek.org/files/CSEDrobotics.pdf

Programming Fundamentals: Course Syllabus 6
Distribution A.

Day 5 Instruction – Input/Output, Code Development 1: simultaneous/multiple assignment

 Resource Document – Code Development 1, Zelle’s slides Chapter01.ppt (slide 24) and

Chapter02.ppt (slide 28)

Day 6 Instruction – Math library (round, truncate, modular, floor, ceiling), Formatting output

 Resource Document – Math Functions, Zelle’s slides Chapter03.ppt (slide 12, 16)

 Reading Assignment – Dawson Ch. 2 (pgs. 33-47)

Day 7 Class Activity – Programming Examples (1 and 2)

 Instruction – Flowchart/pseudocode (UML)

 Resource Document – Programming Examples, Flowchart1.pdf

Day 8 Class Activity – Programming Examples (3 and 4)

 Instruction – Flowchart/pseudocode (UML)

 Resource Document – Flowchart2.pdf

Day 9 Class Activity – Raptor

 Project Assignment – TIBASIC Project due Day 19

 Resource Document – Calc Programming Tutorial

 Reading Assignment – Dawson Ch. 3 (pgs. 49-68)

Day 10 Class Activity – Output Table, Conditionals with Cards

 Resource Document – Output Table, Conditionals with Cards Lesson

Day 11 Class Activity – Conditionals with Cards

 Resource Document – Conditionals with Cards Lesson code.org/files/ConditionalsHoC.pdf

Day 12 Instruction – Reading code, troubleshooting, logical structures

 Resource Document – Zelle’s slides Chapter07.ppt (slides 18, 46, 54, 59, 80)

Day 13 Class Activity – TI-BASIC Project, Programming Examples (5 and 6)

Day 14 Assessment – Assessment 1 and 2 (Chapters 1 – 2 and Flowcharting)

 Resource Document – Assessment 1 and 2

 Reading Assignment – Dawson Ch. 3 (pgs. 69-85)

Day 15 Class Activity – TI-BASIC Project, Programming Examples (7 and 8)

Day 16 Instruction – Looping structures (whiles)

 Resource Document – Zelle’s slides Chapter08.ppt (slides 5, 13, 25, 35, 46, 57, 70, 79)

http://faculty.mu.edu.sa/public/uploads/1410806019.9703program_intro-flowcharts.pdf
http://www.gsd.inesc-id.pt/~jnos/programacao/2012-2013-1/docs/flowcharting.pdf
https://code.org/files/ConditionalsHoC.pdf

Programming Fundamentals: Course Syllabus 7
Distribution A.

Day 17 Class Activity – TI-BASIC Project, Programming Examples (9 and 10)

Day 18 Class Activity – Write the program Run Time using Python®

 Resource Document – Run Time Program

 Reading Assignment – Dawson Ch. 4 (pgs. 87-104)

Day 19 Class Activity – TI-BASIC presentations

Day 20 Class Activity – TI-BASIC presentations

Day 21 Instruction – Looping structures (fors)

 Resource Document – Zelle’s slides Chapter08.ppt (slides 5, 13, 25, 35, 46, 57, 70, 79)

Day 22 Class Activity – Programming Examples (11 and 12)

Day 23 Class Activity – Write the program Bizz-Buzz using Python®

 Resource Document – Bizz-Buzz Program

 Reading Assignment – Dawson Ch. 4 (pgs. 105-120)

Day 24 Instruction – Strings, tuples

 Resource Document – Chapter05.ppt (slides 16, 40, 46-49, 71, 72, 81)

Day 25 Instruction – Strings, tuples

 Resource Document – Chapter05.ppt (slides 16, 40, 46-49, 71, 72, 81)

Day 26 Class Activity – Programming Examples (13 and 14)

 Project Assignment – Scratch Project due Day 39

Day 27 Assessment – Assessment 3 (Chapters 1 – 3)

 Resource Document – Assessment 3

Day 28 Class Activity – Lightbot

 Resource Document – Lightbot lightbot.com/hocflash.html

 Reading Assignment – Dawson Ch. 5 (pgs. 121-137)

Day 29 Instruction – Lists

 Resource Document – Chapter05.ppt (slides 16, 40, 46-49, 71, 72, 81)

Day 30 Instruction – Lists

 Resource Document – Chapter05.ppt (slides 16, 40, 46-49, 71, 72, 81)

Day 31 Class Activity – Scratch Project, Programming Examples (15 and 16)

Day 32 Class Activity – Scratch Project, Programming Examples (17 and 18)

http://lightbot.com/hocflash.html

Programming Fundamentals: Course Syllabus 8
Distribution A.

Day 33 Class Activity – Write the program Days Alive v2.0 using Python®

 Resource Document – Days Alive v2.0 Program

 Reading Assignment – Dawson Ch. 5 (pgs. 138-155)

Day 34 Class Activity – Scratch Project, Programming Examples (19)

Day 35 Class Activity – Scratch Project, Programming Examples (20)

Day 36 Class Activity – Scratch Project, Programming Examples (21)

Day 37 Class Activity – Scratch Project

Day 38 Assessment – Assessment 4 (Chapters 1 – 4)

 Resource Document – Assessment 4

Day 39 Class Activity – Scratch Project presentations

Day 40 Class Activity – Scratch/Alice presentations

Day 41 Class Activity – List Tasks

Day 42 Class Activity – List Task 1: Days Alive v2.3

 Resource Document – List Task 1

Day 43 Class Activity – Blockly

 Resource Document – Blockly blockly-games.appspot.com/

 Reading Assignment – Dawson Ch. 6 (pgs. 157-173)

2.2. QUARTER 2

Day 44 Instruction – Dictionaries

Day 45 Class Activity – Dictionary Task

Day 46 Class Activity– List Task 2: Days Alive v2.6

 Resource Document – List Task 2

Day 47 Instruction – Functions / Subroutines

 Resource Document – Zelle’s slides Chapter06.ppt

Day 48 Class Activity – Sorting Task

Day 49 Instruction – Code Development 2: Sorting algorithms

 Resource Document – Code Development 2

https://blockly-games.appspot.com/

Programming Fundamentals: Course Syllabus 9
Distribution A.

Day 50 Class Activity – Sorting

Day 51 Class Activity – Sorting

Day 52 Class Activity – Copper Tape Circuits

 Instruction – Introduction to Arduino microcontrollers

 Resource Document – Circuit Sketchbook technolojie.com/circuit-sticker-sketchbook/

Day 53 Class Activity – Write the program Days Alive v3.0 in Python®

 Project Assignment – Microcontroller Project due Day 62

 Reading Assignment – Dawson Ch. 6 (pgs. 174-188)

Day 54 Class Activity – Microcontroller Project

Day 55 Class Activity – Microcontroller Project

Day 56 Instruction – Functions / Subroutines

 Resource Document – Zelle’s slides Chapter06.ppt

Day 57 Assessment – Assessment 5 (Chapters 1 – 5)

 Resource Document – Assessment 5

Day 58 Class Activity – Microcontroller Project

Day 59 Class Activity – Microcontroller Project

Day 60 Class Activity – Microcontroller Project

Day 61 Class Activity – Microcontroller Project

Day 62 Class Activity – Microcontroller Project

 Reading Assignment – Dawson Ch. 7 (pgs. 189-202)

Day 63 Class Activity – Microcontroller program presentations

Day 64 Class Activity – Microcontroller program presentations

Day 65 Instruction – Files and operations

 Resource Document – Chapter05.ppt (slides 16, 40, 46-49, 71, 72, 81)

Day 66 Instruction – Code Development 3: Searching algorithms

 Resource Document – Code Development 3

Day 67 Class Activity – Searching

Day 68 Class Activity – Searching

Day 69 Project Assignment – Individual projects due Day 81

 Reading Assignment – Dawson Ch. 7 (pgs. 202-216)

http://technolojie.com/circuit-sticker-sketchbook/

Programming Fundamentals: Course Syllabus 10
Distribution A.

Day 70 Class Activity – Final Project

Day 71 Instruction – Exceptions

Day 72 Class Activity – Final Project

Day 73 Class Activity – Final Project

Day 74 Assessment – Assessment 6 (Chapters 1 – 6)

 Resource Document – Assessment 6

Day 75 Class Activity – Final Project

Day 76 Class Activity – Final Project

Day 77 Class Activity – Final Project

Day 78 Class Activity – Final Project

Day 79 Class Activity – Final Project

Day 80 Class Activity – Final Project

Day 81 Class Activity – Final Project

Day 82 Class Activity – Final presentations during Exam

 Assessment – Semester Exam

 Resource Document – Semester Exam

3. CONTENT

The design of the course is such that the textbook can be used on a daily basis for students to work at

their own pace. However, you may want your students to interact, collaborate, and problem solve

together; use the content found in this document for these purposes.

It is expected that students in this class may have a wide variety of programming skills. Some students

will need instruction at a basic level, while others will be more advanced and need little instruction. To

accommodate the different levels in the classroom, the suggested content below is meant to provide

opportunities for all students to be successful. Some of the lessons or activities can be completed at a

very basic level, and others will challenge even the best students.

3.1. INSTALLATION

This section contains step-by-step instructions for downloading and installing Python, TI Connect,

Scratch, Alice, and Arduino software students will use during the course. The installation information

was revised in summer 2016; check to see if revisions are necessary, due to a software update or web-

site upgrade, before distributing to students.

Programming Fundamentals: Course Syllabus 11
Distribution A.

3.1.1. PYTHON INSTALLATION

The course is designed with the use of Python 3.x in mind. Feel free to use Python 2.x, if preferred.

All documented code is written with Python 3.4 and would need revision to share with students using

Python 2.x

3.1.1.1. APPLE/MAC OS

1. Navigate to www.python.org/. Click Downloads. Choose the latest Python release, (at the time of

writing, the latest release is version 3.5). See Figure 1.

2. Most browsers will automatically download the file to your Downloads folder. For some browsers,

you may need to save the download to your Downloads folder.

3. Open the disk image, python.3.5.2.dmg.

4. Open the Python.mpkg package and follow the steps for installation.

5. Python 3.5 is installed in your Applications folder. Launch the Python GUI by opening IDLE.

6. Create a shortcut or put it in your dock for easy access later.

Figure 1

3.1.1.2. PC/WINDOWS

1. Navigate to www.python.org/. Click Downloads. Choose the latest Python release, (at the time of

writing, the latest release is version 3.5). See Figure 1.

2. Most browsers will automatically download the file to your Downloads folder. For some browsers,

you may need to SAVE the download to your Downloads folder.

3. Run the Python installation file, python-3.5.2.msi. Follow the steps for installation.

4. There are two ways to start the Python GUI.

a. Open python.exe in the Python35 folder, then execute these two commands:

¶ import idlelib.PyShell

https://www.python.org/
https://www.python.org/

Programming Fundamentals: Course Syllabus 12
Distribution A.

¶ idlelib.PyShell.main()

b. Open the idle.pyw file by navigating to the correct folder: Python35>Lib>idlelib>idle.pyw.

Create a shortcut or pin it to your taskbar for easy access later.

3.1.2. TI CONNECT INSTALLATION

Purchased TI-83 or 84 calculators include the TI Connect software, and a USB cable to connect the

calculator to a computer. TI Connect software is the new-generation link software, which takes TI

calculator technology to a new level of connectivity. Downloading data, calculator applications (Apps),

and games, installing Operating System (OS) updates, and transferring programs between the calculator

and computer are easier than ever before. Users can do the following:

¶ Capture screen images and use them in presentations

¶ Drag and drop all data types in one consistent manner

¶ Download calculator software applications to use the calculator in more classes

¶ Back up the data from a calculator to a computer

¶ Download games to a calculator

¶ Program editing capabilities (Mac only)

New TI calculators come packaged with TI Connect software on a CD. Insert the CD into your

computer’s disk drive and follow the directions. If access to the CD containing the TI Connect software

is not available, there are two options for downloading the software.

3.1.2.1. DOWNLOAD OPTION A

1. Navigate to: education.ti.com/en/us/home.

2. From menu at top, choose Downloads -> Apps, Software & Updates. See Figure 2.

3. Do the following (see Figure 3):

a. Technology: select Computer Software from drop down menu.

b. View: select Connectivity Software from drop down menu.

c. Click Find.

Figure 2

http://education.ti.com/en/us/home

Programming Fundamentals: Course Syllabus 13
Distribution A.

Figure 3

4. Choose appropriate version for your computer – click on TI Connect Software for Macintosh or TI

Connect Software for Windows (see Figure 4). Then, click on the link under Download Item.

Figure 4

5. In the Sign In window, click Continue as guest to complete the download. See Figure 5.

Figure 5

Programming Fundamentals: Course Syllabus 14
Distribution A.

3.1.2.2. DOWNLOAD OPTION B

1. Navigate to: education.ti.com/en/us/products/computer_software/connectivity-software/ti-

connect-software/features/features-summary. Choose the appropriate version for your computer

from the icons on the right side of the window. See Figure 6.

Figure 6

2. Choose appropriate version for your computer – click on TI Connect Software for Macintosh or TI

Connect Software for Windows. Then, click on the link under Download Item.

3. In the Sign In window, click Continue as guest to complete the download. See Figure 7.

3.1.2.3. INSTALLATION

Once the download is complete, you can install the software.

1. For a computer running MacOS, you will find the software in your Applications folder (see Figure 8).

For a computer running Windows, you will find the software in a folder labeled TI Tools (see Figure

8). Open the TI Connect application.

Figure 7

http://education.ti.com/en/us/products/computer_software/connectivity-software/ti-connect-software/features/features-summary
http://education.ti.com/en/us/products/computer_software/connectivity-software/ti-connect-software/features/features-summary

Programming Fundamentals: Course Syllabus 15
Distribution A.

Figure 8: Mac OS Figure 9: Windows

2. Connect a calculator to your computer with the appropriate USB cable. Use of the software is

intuitive, however, if you have difficulty, click the Help button or the Help menu to get more details

on how to use this software. Program files can now be saved to a computer.

On a Mac, this software may be used to view, edit, and print programs. On a PC, an additional piece

of software, Token IDE, is needed to view, edit, and print programs.

3.1.3. SCRATCH INSTALLATION

Scratch is a programming language and online community where you can create your own interactive

stories, games, and animations – and share your creations with others around the world. In the process

of designing and programming Scratch projects, young people learn to think creatively, reason

systematically, and work collaboratively.

Students create programs by snapping together program blocks that control characters, called sprites,

in a window, called a stage. Coding blocks exist for input and output, operations, conditional

statements, and loops. The blocks will only snap together with other blocks that create a logically

sequenced program.

Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab.

1. Navigate to: scratch.mit.edu/.

Figure 10

2. Click on Join Scratch at the top, right of the page. See Figure 10.

https://scratch.mit.edu/

Programming Fundamentals: Course Syllabus 16
Distribution A.

3. Follow the instructions to make your own Scratch account. Scratch’s privacy policy specifically

states that your personal information will not be given to other persons, companies, or

organizations. Remember to choose whether you want to receive email updates or not.

3.1.4. ALICE INSTALLATION

Alice is educational software that teaches students computer programming in a 3D environment.

Students can create their own interactive stories, games, and animations. In the process of designing

and programming Alice projects, young people learn to think creatively, reason systematically, and

work collaboratively.

Students create programs by snapping together program blocks that control characters, called objects,

in a window, called a world. Coding blocks exist for input and output, operations, conditional

statements, and loops. The blocks will only snap together with other blocks that create a logically

sequenced program.

3.1.4.1. APPLE/MAC OS

1. Navigate to: www.alice.org/index.php.

2. Look in the bottom left of the web page, find the link to download Alice 2.x. See Figure 11.

Figure 11

3. Choose the appropriate version for your computer – click on the link for Alice 2.4 for Mac OS X.

See Figure 12.

Figure 12

http://www.alice.org/index.php

Programming Fundamentals: Course Syllabus 17
Distribution A.

4. It will take a few minutes to download the file. Open the file (Alice2.x.dmg or Alice

2.xb.dmg), it is likely going to be in the Downloads folder.

5. Copy the files to another location on your computer (Desktop, Applications, or the

Documents folder).

6. Now Alice can opened to begin your first project.

3.1.4.2. PC/WINDOWS

1. Navigate to: www.alice.org/index.php.

2. Look in the bottom left of the web page, find the link to download Alice 2.x. See Figure 13.

Figure 13

3. Choose the appropriate version for your computer – click on the link for Alice 2.4 for Windows.

See Figure 14.

4. It will take a few minutes to download the file. Unzip the file (Alice2.x.zip or Alice 2.xb.zip), it is

likely going to be in the Downloads folder.

5. Copy the files to another location on your computer (Desktop, Program Files, or the Documents

folder).

Figure 14

http://www.alice.org/index.php

Programming Fundamentals: Course Syllabus 18
Distribution A.

6. Now Alice can opened to run, beginning your first project.

3.1.5. ARDUINO INSTALLATION

Arduino is an open-source platform that allows users to create interactive projects that combine

the power of microcontrollers with easy-to-use software. The programs, called sketches, are

written using Processing, and are used to control sensors, motors, LEDs, LCDs, and more. The base

microcontroller can be expanded using shields to enable extended capabilities like Ethernet and

blue tooth.

3.1.5.1. APPLE/MAC OS

1. Navigate to https://www.arduino.cc/. Click on Download. See Figure 15.

Figure 15

2. Choose the appropriate version for your computer – click on Mac OS X 10.7 Lion or newer.
In the next window, choose Just Download. See Figure 16.

Figure 16

3. It will take a few minutes to download the file. The file may automatically unzip; if not,
unzip the file (arduino-1.6.5-r3). The file is likely going to be in your Downloads folder.

4. Copy the files to another location on your computer (Desktop, Applications, or the
Documents folder). Now you can open and run Arduino to begin your project.

3.1.5.2. PC/WINDOWS

1. Navigate to https://www.arduino.cc/. Click on Download. See Figure 17.

https://www.arduino.cc/
https://www.arduino.cc/

Programming Fundamentals: Course Syllabus 19
Distribution A.

Figure 17

2. Choose the appropriate version for your computer – click on Windows ZIP file for non admin
install. In the next window, choose Just Download. See Figure 18.

Figure 18

3. It will take a few minutes to download the file. Unzip the file (arduino-1.6.5-r2), it is likely
going to be in your Downloads folder.

4. Copy the files to another location on your computer (Desktop, Program Files, or the
Documents folder). Now you can open and run Arduino to begin your project.

3.2. HOUR OF CODE ACTIVITIES

Cups: The Cups lesson is to be used as a non-computer programming activity. The syllabus lists this

activity for the fourth or fifth day of school to introduce students to the idea of (1) programs being a

sequence of steps to be followed, and (2) programs needing precise detail to generate the intended

outcome. csedweek.org/files/CSEDrobotics.pdf

Lightbot: This activity can assess students’ programming capabilities using an online puzzle game. The

syllabus lists this activity on the twenty-ninth day. You may want to use this earlier in the course.

Judge students not just on how many levels they complete, but how many they complete based on

their programming ability. Students with less background can easily complete the first few puzzles, but

may start to struggle as they work on the Procedures and Loops sections. Students with strong

programming backgrounds should be able to complete all levels with little difficulty. If advanced

students finish early, they could be challenged to design their own level and solution.

lightbot.com/hocflash.html

http://csedweek.org/files/CSEDrobotics.pdf
http://lightbot.com/hocflash.html

Programming Fundamentals: Course Syllabus 20
Distribution A.

Conditionals with Cards: Using playing cards, students demonstrate their understanding of conditional

statements by following algorithms in this non-computer programming activity. Simple games are

created with provided algorithms. Students take turns drawing cards and evaluate the program

statements to determine how that card is scored for the player. The winner is determined after a

specified number of rounds, or number of points. A more advanced version can include nested

conditionals, or students designing their own algorithms. code.org/files/ConditionalsHoC.pdf

Blockly: Similar to the Lightbot activity above, students show programming skills by completing short

programs using drag-and-drop coding blocks. Allow students to move on to the next level or section

when they become stuck because some of the levels can be quite difficult to complete. While there is

benefit in persevering, finding out how much students have learned during a class period requires them

to move quickly through most of the puzzles. Students can always go back and continue their progress

during their own time another day. blockly-games.appspot.com/

3.3. LESSONS

These lessons are designed to be passed out to students as either information or assignments, and are

provided in a separate document.

Logbook: This document contains logbook instructions that could be distributed to students to help

explain what a logbook is and how it can be beneficial. It would also be useful for an educator that has

never used a logbook before to review this information.

Math Functions: Students can work through this worksheet on their own, or this can be a guided class

activity. Students learn how to use functions for rounding numeric values, including some functions in

the Math Library for Python.

Calculator Programming Tutorial: A short (5 pages) group of example programs are included in this

document. Instructors should distribute the tutorial to students to use as a reference while writing their

own programs on a TI-83 or TI-84.

Code Development: Suggestions for writing quality code are included in this document. It is intended

that this course includes a discussion of sorting and searching techniques since these algorithms are so

common to software development. Unfortunately, the development of these ideas was cut short by

the end of the summer; instructors may be able to pull some ideas out of the document for their own

use.

3.4. PYTHON PROGRAMS

This course was designed to assess students’ progress writing programs in Python every eight to ten

days. Students should be given a task that requires them to write a program during class using what

they have learned in Python. The task could be given to the students the day before so they can plan

https://code.org/files/ConditionalsHoC.pdf
https://blockly-games.appspot.com/

Programming Fundamentals: Course Syllabus 21
Distribution A.

their program the night before; when they arrive in class, students can focus on getting the program to

run correctly. Many of these programs will include some sort of mathematical calculation. These tasks

and solutions are included in a separate document.

Bizz-Buzz: Instructs students to write a Python® program for the children’s game Bizz-Buzz. There are

three levels of differentiation either for educators or students to choose from. A sample solution is

included.

Number of Days Alive v2 and v3: Version one of this program is part of Assessment 1. Each version

requires a more accurate estimate of the number of days the user has been alive.

Programming Examples: A series of 21 programming problems for students to complete in class as they

begin to learn about writing input/output statements, conditional statements, and looping structures.

Sample solutions for all programs are provided.

3.5. PROJECTS

Students will be asked to apply their knowledge of programming to other languages through the

completion of long-term assignments or projects; this is assigned on top of textbook work and activities

they are completing in class daily. Students will have twelve to twenty days to complete each project,

and will be required to present their work to the class. Emphasis should be placed on the progress

students make toward a working solution and their knowledge of what is left to be completed, not on

just achieving a working program. Students with limited programming background should be

encouraged to attempt programs that are within their capabilities at the beginning of the year and

asked to stretch themselves as the course progresses. Challenge students with strong programming

skills to write challenging programs right from the beginning, and reward them for taking risks even if

they are unable to complete the program in the given time frame. These projects are included in a

separate document.

TI Basic: This project has students write a calculator program for finding equations of linear and

quadratic equations. There are three levels of differentiation either for educators or students to choose

from. Code for finding the coefficients of a quadratic equation written in standard form is provided.

Scratch/Alice: Using coding blocks, students will write a program to teach a math skill, or tell a story

that requires the user to solve math puzzles. There are three levels of differentiation either for

educators or students to choose from.

Arduino: Students will be given access to Arduino microcontrollers to build a prototyping project using

sensors and LEDs. Students would not need to learn another programming language if a

microcontroller that can be programmed in Python was chosen for this project. There are three levels

of differentiation either for educators or students to choose from.

Programming Fundamentals: Course Syllabus 22
Distribution A.

Independent: Allow students to self-select the direction they want to go for this final project. They can

build upon a prior project, or start something entirely new. In either case, work with students to

develop a plan for their idea, and set-up tentative progress checks to keep them focused on making

progress.

3.6. ASSESSMENTS

Assessments should include writing short programs or methods, reading and interpreting the output of

code, and debugging code. While the goal is to have students complete all twelve chapters of the text,

it is expected that some students will develop competency or mastery over content in the first seven

chapters. For that reason, assessments are organized so that the last assessment covers all seven

chapters. Sample solutions are provided for the pre-assessment and first four assessments. These

assessments are included in separate documents.

¶ Pre-assessment

¶ Assessment 1 – Chapters 1 and 2

¶ Assessment 2 – Flowcharts

¶ Assessment 3 – Chapters 1 and 3, emphasis on debugging code

¶ Assessment 4 – Chapters 1 through 4

¶ Assessment 5 – Chapters 1 through 5

¶ Assessment 6 – Chapters 1 through 6

¶ Semester Exam – Chapters 1 through 7

4. RESOURCES

This section contains links to resources that may be used during the course. Some lead to PDFs, and

others lead to websites with useful information.

4.1. STANDARDS AND COURSES

¶ Link to the ISTE Standards: www.iste.org/docs/pdfs/20-14_ISTE_Standards-S_PDF.pdf.

¶ Link to the CSTA Standards: csta.acm.org/Curriculum/sub/K12Standards.html.

¶ Link to the AP Computer Science course description:

media.collegeboard.com/digitalServices/pdf/ap/ap-computer-science-a-course-description-

2014.pdf.

¶ Link to the AP Computer Science Principles course description: secure-

media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-

exam-description.pdf.

http://www.iste.org/docs/pdfs/20-14_ISTE_Standards-S_PDF.pdf
http://csta.acm.org/Curriculum/sub/K12Standards.html
http://media.collegeboard.com/digitalServices/pdf/ap/ap-computer-science-a-course-description-2014.pdf
http://media.collegeboard.com/digitalServices/pdf/ap/ap-computer-science-a-course-description-2014.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf

Programming Fundamentals: Course Syllabus 23
Distribution A.

4.2. FLOWCHARTS

The first two documents are support materials for classroom instruction on flowcharts – Flowchart1.pdf

and Flowchart2.pdf. Raptor is a nice environment for creating and executing flowcharts on a computer.

The last link is to a free site for creating flowcharts.

¶ This document is a short (6 pages) introduction to creating flowcharts. It can be distributed to

students as a reference document. It includes some instruction on how to write pseudocode.

faculty.mu.edu.sa/public/uploads/1410806019.9703program_intro-flowcharts.pdf

¶ This document is long (105 pages). The examples included in the document can be used for

classroom instruction or creating assessment items. www.gsd.inesc-

id.pt/~jnos/programacao/2012-2013-1/docs/flowcharting.pdf

¶ Raptor is a flowchart-based programming environment that helps students visualize algorithms.

After flowcharts are created, students can watch them execute visually as progress is traced

through the flowchart. Download can be found here: raptor.martincarlisle.com/.

¶ Creately.com provides free online tools for creating flowcharts. The following is a link to a short

tutorial: creately.com/blog/diagrams/flowchart-guide-flowchart-tutorial/.

4.3. TEXTBOOKS

¶ Link to information for Python Programming for the Absolute Beginner, 3rd edition, by Michael

Dawson, the first textbook referenced as a resource in the syllabus:

www.cengage.com/search/productOverview.do?N=+11&Ntk=P_Isbn13&Ntt=9781435455009.

¶ Link to a site with many open source textbooks using Python: pythonbooks.revolunet.com/.

¶ Link to Invent Your Own Computer Games with Python, 2nd edition, by Al Sweigart, the second

book referenced as a resource in the syllabus inventwithpython.com/chapters/. It provides lots

of practical programming examples for students to study involving game environments.

¶ Link to Making Games with Python and Pygame, by Al Sweigart:

inventwithpython.com/pygame/chapters/. Similar to the above text, but develops more

advanced game creation. This text would be useful for a student who has a strong background

in programming and a strong interest in game creation.

¶ Link to Hacking Secret Ciphers with Python, by Al Sweigart:

inventwithpython.com/hacking/chapters/. This text is similar to the Invent Your Own Computer

Games book with a focus on creating programs that encode and decode information.

¶ Link to Think Python, by Allen Downey: www.greenteapress.com/thinkpython/thinkpython.pdf.

¶ Link to Think Complexity, by Allen Downey: greenteapress.com/complexity/html/index.html.

http://faculty.mu.edu.sa/public/uploads/1410806019.9703program_intro-flowcharts.pdf
http://www.gsd.inesc-id.pt/~jnos/programacao/2012-2013-1/docs/flowcharting.pdf
http://www.gsd.inesc-id.pt/~jnos/programacao/2012-2013-1/docs/flowcharting.pdf
http://raptor.martincarlisle.com/
http://creately.com/blog/diagrams/flowchart-guide-flowchart-tutorial/
http://www.cengage.com/search/productOverview.do?N=+11&Ntk=P_Isbn13&Ntt=9781435455009%20
http://pythonbooks.revolunet.com/
http://inventwithpython.com/chapters/
http://inventwithpython.com/pygame/chapters/
http://inventwithpython.com/hacking/chapters/
http://www.greenteapress.com/thinkpython/thinkpython.pdf
http://greenteapress.com/complexity/html/index.html

Programming Fundamentals: Course Syllabus 24
Distribution A.

¶ This text would be better used with a younger audience, rather than high school students. Link

to Hello World! Computer Programming for Kids and Other Beginners, 2nd edition, by Warren

and Carter Sande: www.manning.com/sande2/.

¶ This text is a college level text. Slides from this course can be used as a resource for classroom

instruction. Links to Python Programming: An Introduction to Computer Science, 2nd edition, by

John M. Zelle, PhD.

- mcsp.wartburg.edu/zelle/python/

- mcsp.wartburg.edu/zelle/python/ppics2/slides/

¶ Link to code.org curriculum Exploring Computer Science: www.exploringcs.org/curriculum. This

is a National Science Foundation (NSF) funded project published in collaboration with code.org.

The intended use for this text is a year-long course with high school students. It is more theory

based, with less emphasis on programming skills.

¶ Link to a text that is intended for use with Python 2.x:

en.wikibooks.org/wiki/Python_Programming/.

4.4. GRAPHING CALCULATOR SUPPORT

¶ Link to Texas Instruments home page: education.ti.com/en/us/home.

¶ Link to site with Token IDE software: merthsoft.com/.

¶ Link to TI-83 Guidebook:

education.ti.com/en/us/guidebook/details/en/ABF6D3DD944745A7A76609E97F84B1F7/83p.

¶ Link to TI-84 Guidebook:

education.ti.com/en/us/guidebook/details/en/C4D11EB6D86B47D19CD768E54A967441/84p.

¶ Link to TI-Nspire Guidebook:

education.ti.com/en/us/guidebook/details/en/F23F9ED1939745F2A8B0DCB2F7ACF336/getting

startedwiththeti-nspirehandheld-2.

¶ Link to an introduction to programming on the TI-Nspire:

education.ti.com/~/media/AEB0BE7F2C264AB6978A727A97DE2695. It is an older document

referencing an older operating system, but still can be used to learn about some basics of

programming the Nspire.

¶ Link to video tutorials for using a TI-Nspire calculator: www.atomiclearning.com/ti_nspire.

¶ Link to international collaborative housing support and resources for TI calculators:

www.ticalc.org/.

¶ Links to another site housing support and resources for TI calculators.

- tibasicdev.wikidot.com/home

- tibasicdev.wikidot.com/nspire

¶ Link to website for LUA language: www.lua.org/.

¶ Link to extensive set of tutorials and resources for scripting in LUA:

www.compasstech.com.au/TNS_Authoring/Scripting/index.html.

http://www.manning.com/sande2/
http://mcsp.wartburg.edu/zelle/python/
http://mcsp.wartburg.edu/zelle/python/ppics2/slides/
http://www.exploringcs.org/curriculum
http://en.wikibooks.org/wiki/Python_Programming/
http://education.ti.com/en/us/home
http://merthsoft.com/
http://education.ti.com/en/us/guidebook/details/en/ABF6D3DD944745A7A76609E97F84B1F7/83p
http://education.ti.com/en/us/guidebook/details/en/C4D11EB6D86B47D19CD768E54A967441/84p
http://education.ti.com/en/us/guidebook/details/en/F23F9ED1939745F2A8B0DCB2F7ACF336/gettingstartedwiththeti-nspirehandheld-2
http://education.ti.com/en/us/guidebook/details/en/F23F9ED1939745F2A8B0DCB2F7ACF336/gettingstartedwiththeti-nspirehandheld-2
http://education.ti.com/~/media/AEB0BE7F2C264AB6978A727A97DE2695
http://www.atomiclearning.com/ti_nspire
http://www.ticalc.org/
http://tibasicdev.wikidot.com/home
http://tibasicdev.wikidot.com/nspire
http://www.lua.org/
http://www.compasstech.com.au/TNS_Authoring/Scripting/index.html

Programming Fundamentals: Course Syllabus 25
Distribution A.

¶ Link to another site with tutorials and resources for scripting in LUA: inspired-lua.org/.

¶ Book to consider as a resource for LUA, Programming in Lua, 3rd edition, by Roberto

Ierusalimschy: www.lua.org/pil/.

4.5. ADDITIONAL RESOURCES AND LINKS TO INFORMATION

¶ Links to Python support – wikis, documents, forums:

- wiki.python.org/moin/BeginnersGuide

- docs.python.org/3/

- anandology.com/python-practice-book/

- www.python-forum.org/

- stackoverflow.com/

¶ Links to sites with a multitude of simple programming problems for varying abilities:

- adriann.github.io/programming_problems.html

- projecteuler.net/

- codekata.com/

¶ Links to Hour of Code activities:

- code.org/hourofcode

- csedweek.org/learn

- www.tynker.com/hour-of-code/

- studio.code.org/flappy/1

¶ Links to sites providing activities, videos, or learning to program tools:

- www.techsupportalert.com/content/best-free-ways-learn-programming.htm

- www.edsurge.com/guide/teaching-kids-to-code#A-Comparison-of-50-Coding-Tools

- http://docs.python-guide.org/en/latest/intro/learning/

- www.learnpython.org/

- www.trycomputing.org/resources

- www.trycomputing.org/resources/teachers

- programarcadegames.com/index

- www.codecademy.com/

- learn.code.org/

http://inspired-lua.org/
http://www.lua.org/pil/
https://wiki.python.org/moin/BeginnersGuide
https://docs.python.org/3/
http://anandology.com/python-practice-book/
http://www.python-forum.org/
http://stackoverflow.com/
http://adriann.github.io/programming_problems.html
https://projecteuler.net/
http://codekata.com/
http://code.org/hourofcode
http://csedweek.org/learn
http://www.tynker.com/hour-of-code/
https://studio.code.org/flappy/1
http://www.techsupportalert.com/content/best-free-ways-learn-programming.htm
http://www.edsurge.com/guide/teaching-kids-to-code#A-Comparison-of-50-Coding-Tools
http://docs.python-guide.org/en/latest/intro/learning/
http://www.learnpython.org/
http://www.trycomputing.org/resources
http://www.trycomputing.org/resources/teachers
http://programarcadegames.com/index.php?lang=en
http://www.codecademy.com/
http://learn.code.org/

Programming Fundamentals: Course Syllabus 26
Distribution A.

- developers.google.com/edu/python/

- www.pythontutor.com/

- progzoo.net/wiki/Python:ProgZoo

- www.openculture.com/computer_science_free_courses

- www.codeschool.com/

¶ Links to programming applications using code blocks:

- scratch.mit.edu/

- snap.berkeley.edu/

- www.alice.org/index.php

- www.appinventor.org/

¶ Links to videos on programming in Python:

- www.python.org/doc/av

- www.youtube.com/user/PythonLearn

- www.youtube.com/results?search_query=onestopprogramming

¶ Links to microcontroller information and retail sales:

- www.arduino.cc/

- www.adafruit.com/

- www.sparkfun.com/

- www.makershed.com/

- www.parallax.com/

- www.robotshop.com/

¶ Links to sites with microcontroller projects:

- playground.arduino.cc/projects/arduinoUsers

- duino4projects.com/arduino-project-list/

- www.pjrc.com/teensy/projects.html

- www.ladyada.net/make/index.html

- www.instructables.com/ - search TI, programming, Arduino, etc

¶ Links to microcontroller alternatives to Arduino – some of these are programmed using Python:

- playground.arduino.cc/interfacing/python

- micropython.org/

https://developers.google.com/edu/python/
http://www.pythontutor.com/
http://progzoo.net/wiki/Python:ProgZoo
http://www.openculture.com/computer_science_free_courses
http://www.codeschool.com/
http://scratch.mit.edu/
http://snap.berkeley.edu/
http://www.alice.org/index.php
http://www.appinventor.org/
http://www.python.org/doc/av
http://www.youtube.com/user/PythonLearn
http://www.youtube.com/results?search_query=onestopprogramming
http://www.arduino.cc/
http://www.adafruit.com/
http://www.sparkfun.com/
http://www.makershed.com/
http://www.parallax.com/
http://www.robotshop.com/
http://playground.arduino.cc/projects/arduinoUsers
http://duino4projects.com/arduino-project-list/
http://www.pjrc.com/teensy/projects.html
http://www.ladyada.net/make/index.html
http://www.instructables.com/
http://playground.arduino.cc/interfacing/python
http://micropython.org/

Programming Fundamentals: Course Syllabus 27
Distribution A.

- www.raspberrypi.org/

- tiny-circuits.com/

- beagleboard.org/getting-started

¶ Sites supporting young women learning programming:

- csedweek.org/girls

- www.madewithcode.com/

- www.blinkblink.cc/

¶ Links to Rubrics:

- bie.org/for/teachers

- www.edutopia.org/

- imcreativeteaching.blogspot.co.uk/#uds-search-results

¶ Links to other sites:

- technolojie.com/circuit-sticker-sketchbook/ - copper tape circuits

- therealkatie.net/blog/tags/pygame/ - PyGame tutorial

- processing.org/ - language used with Arduino IDE

- playspent.org/ - example of decision based game

- armorgames.com/play/6061/light-bot-20 - expanded version of Lightbot for mobile devices

- www.makeschool.com/build-an-iphone-game-in-your-browser - build mobile apps online

- www.agentcubesonline.com/ - tool for making 3D games

- www.yoyogames.com/studio - GameMaker Studio

- www.bootstrapworld.org - programming games with algebra

http://www.raspberrypi.org/
https://tiny-circuits.com/
http://beagleboard.org/getting-started
http://csedweek.org/girls
http://www.madewithcode.com/
http://www.blinkblink.cc/
http://bie.org/for/teachers
http://www.edutopia.org/
http://imcreativeteaching.blogspot.co.uk/#uds-search-results
http://technolojie.com/circuit-sticker-sketchbook/
http://therealkatie.net/blog/tags/pygame/
http://processing.org/
http://playspent.org/
http://armorgames.com/play/6061/light-bot-20
https://www.makeschool.com/build-an-iphone-game-in-your-browser
http://www.agentcubesonline.com/
http://www.yoyogames.com/studio
http://www.bootstrapworld.org/

